This article was downloaded by:

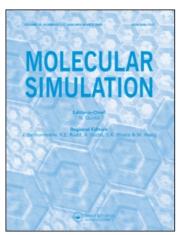
On: 14 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK



Molecular Simulation

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713644482

Modelling of 3D Radial Distribution Functions with the Program Mathematica

F. Cuadros^a; W. Okrasinski^b; M. Sànchez-Sànchez^a

^a Dpto, de Fisica, Universidad de Extremadura, Badajoz, Spain ^b Institute of Mathematics, University of Wrocław, Wrocław, Poland

To cite this Article Cuadros, F. , Okrasinski, W. and Sànchez-Sànchez, M.(1998) 'Modelling of 3D Radial Distribution Functions with the Program Mathematica', Molecular Simulation, 20:4,223-237

To link to this Article: DOI: 10.1080/08927029808024179
URL: http://dx.doi.org/10.1080/08927029808024179

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

MODELLING OF 3D RADIAL DISTRIBUTION FUNCTIONS WITH THE PROGRAM MATHEMATICA

F. CUADROS^a, W. OKRASINSKI^b and M. SANCHEZ-SANCHEZ^a

^aDpto. de Fisica, Universidad de Extremadura, 06071 Badajoz, Spain; ^bInstitute of Mathematics, University of Wroclaw, 50-384 Wroclaw, Poland

(Received March 1997; Accepted March 1997)

Using the program Mathematica 2.0 we have fitted the computer simulation data of the radial distribution function (RDF) for almost 700 states and five values of the Week-Chandler-Andersen (WCA) perturbative parameter for three-dimensional (3D) Lennard-Jones fluids. The fit has the form of the polynomial of tenth degree with respect to the interparticle distance. Applying the WCA theory to this fit we have calculated the difference between the pressures of the full and reference system. To test our fit we have compared the calculated differences with those ones obtained by molecular simulation data.

Keywords: 3D simple fluids; radial distribution function; WCA theory; program Mathematica

The structure of fluids with spherical particules may be conveniently described through the radial distribution function (RDF) [1]. It is very important to know its shape as it is the principal structural information used to calculate basic thermodynamic quantities of fluids.

In two (2D) or three-dimensional (3D) systems the RDF can be obtained from theoretical approximations as Percus-Yevick (PY), hypernetted-chain (HNC) theories, etc., or by computer simulations. In 3D case the RDF can be obtained also by scattering experiments. All these methods are mentioned in [2] and in references therein.

For realistic potential interactions description the Lennard-Jones (LJ) potential is used very frequently. It was reasonable to treat the LJ fluid by exploiting the results already existing for the hard sphere (HS) fluids, for which the basic thermodynamic properties have been described well enough. The principal idea, to treat the LJ system essentially as a HS system but

perturbated by the attractive interaction, has been presented in several versions of the so-called perturbation theories. The versions most frequently used are those of Baker and Henderson [3] as well as WCA [4].

Using the WCA theory we have made computer simulations for 700 states in 3D case similarly as it was done in 2D case [2,5]. We have obtained the values of the RDFs for different values of the pertubative parameters and also values of the difference between the pressures of the full LJ system and the reference one. In this work we present the modelling of the RDFs as the polynomials of tenth degree. Next we compare the difference of pressures obtained from molecular simulations with that one from the WCA theory with the use of our RDF model. We would like emphasize that this last test is more better than those ones for models considered earlier and obtained in different way [6-7]. Describing the reference system by Carnahan-Starling (CS) [8] model and Verlet-Weis hard sphere (HS) formula [9] permits us to create a simple and exact enough equation of state (EOS), which has not so many parameters (but the model of RDF must have a lot of parameters to be exact sufficiently). We note that although other EOSs for 3d and 2D LJ fluids have been published [10-13] despite their accuracy, they present by themselves two main problems: the lack of theoretical basis and/or their big size, making very difficult their mathematical handling. All modelling results presented in this paper have been done with the help of the program Mathematica 2.0 [14]. The figures also have been created by this program.

In the WCA theory [4], the full intermolecular potential is separated into a reference part U_0 and a perturbation part U_p . All the short-range repulsive forces are contained in U_0 , and the perturbation part U_p contains all the long-range attractive forces. The intermolecular potential is written as

$$U(r) = U_0(r) + \lambda U_n(r), \tag{1}$$

where r is the interparticle distance and λ is a perturbation parameter which varies continuously from $\lambda = 0$ (reference system) to $\lambda = 1$ (full system). The WCA theory uses the Lennard-Jones (LJ) potential

$$u_{1,1}(r) = 4 \left((1/r)^{1/2} - (1/r)^{6} \right),$$
 (2)

for which

$$U_0(r) = u_{LH}(r) + 1$$
 $r \le r_m = 2^{1/6}$,
= 0 $r > r_m$ (3)

and

$$U_p(r) = -1$$
 $r \le r_m$,
 $= u_{LJ}(r)$ $r > r_m$. (4)

In these equations the quantities are expressed in reduced LJ units. Henceforth all thermodynamic properties will be expressed in the reduced LJ form.

The Helmholtz free energy (HEF) per particle for a system where molecules interact according to the intermolecular potential given by (1) is,

$$A = A_0 - \rho \alpha(T, \rho) \tag{5}$$

A and A_0 being the HFE for the full LJ and of the reference system, respectively, T the temperature, ρ the density, and $\alpha(T,\rho)$ a function given by ([15])

$$-\alpha(T,\rho) = \frac{1}{2} \int U_p(r) g_0(r) d\vec{r} + \frac{1}{2} \int_0^1 d\lambda \int U_p(r) \left[g_{\lambda}(r) - g_0(r) \right] d\vec{r}, \quad (6)$$

where $g_{\lambda}(r)$ and $g_0(r)$ are the RDF of the perturbed $(\lambda \neq 0)$ and reference $(\lambda = 0)$ systems, respectively, and $d\vec{r} = 4\pi r^2 dr$ for 3D case. The physical meaning of $\alpha(T, P)$ is that it gives the contribution of the attractive forces, represented by the function $U_p(r)$, to the HFE. Differentiating Eq. (5) with respect to ρ we obtain the equation of state (EOS) [15]

$$P = P_0 + \Delta P,\tag{7}$$

where P and P_0 are the pressures of the full and reference systems respectively, and

$$\Delta P = -\rho^2 \alpha(T, \rho) - \rho^3 \partial \alpha(T, \rho) / \partial \rho, \tag{8}$$

As we have told earlier, since the pressure of the reference systems can be modelled very well by the Carnahan-Starling model and Verlet-Weis HS formula [8-9] then the next part of this paper we shall be concerning in the modelling of the RDF and its application to the calculation of ΔP .

Molecular dynamics (MD) calculations were carried out to obtain the RDFs, as well as other thermodynamic quantities, e.g. ΔP for 700 states

corresponding to the supercritical, vapour and liquid regions for a 3D LJ fluids composed by 504 particules [6-7]. Each thermodynamical state was simulated during 5000 time-steps and for five values of $\lambda = 0$, 0.25, 0.5, 0.75, 1 with the step $\Delta r = 0.02$ units of the reduced interparticle distance we have obtained the RDF by the formula

$$g_{\lambda}(r) = \frac{n_{\lambda}(r)}{4\pi r^2 \Delta r \rho}, \qquad (9)$$

where $n_{\lambda}(r)$ is the time-averaged number of particles situated at a distance $r \pm \Delta r$ from a given particle, when the interparticle potential is given by Eq. (1) [2]. In MD computer simulations the potential is cut off at the reduced interparticle distance of 2.5. The statistical error of the obtained values of RDF was estimated to be of the order of 1%. We have observed that for all $r \le 0.96$ the every RDF can be considered to be equal to zero and for $r \ge 2.5$ can be considered to be equal to one. Moreover, the difference $g_{\lambda}(r) - g_0(r)$ has the almost linear behaviour with respect to λ (Fig. 1).

Fog $\lambda = 0$, 0.25, 0.5, 0.75, 1 we have prepared data files involving the computer simulation data for RDF such that every line has presented: ρ , T, r, $g_{\lambda}(r)$, where $r \in \langle 0.96, 2.5 \rangle$ with the considered step. To fit this data we have had an intention to use the instruction Fit from the program Mathematica 2.0. The instruction Fit [data, funs, vars] finds a least-squares fit to a list of data

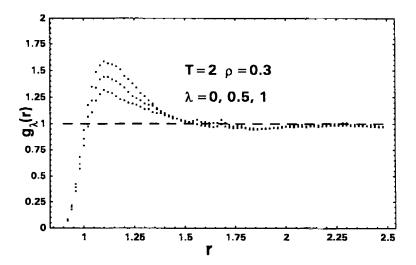


FIGURE 1 RDF obtained from computer simulations at T = 2 and $\rho = 0.3$ for $\lambda = 0, 0.5$ and 1.

as a linear combinations of the functions funs of variable vars. We have tried to find the fit of RDF in the following form

$$g_{\lambda}(r) = \sum_{i=0}^{10} C_i^{\lambda} r^i, \tag{10}$$

where

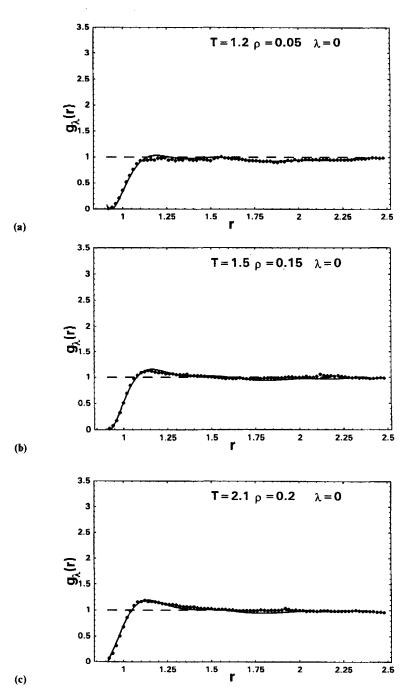
$$C_i^{\lambda} = D_{i1}^{\lambda} + D_{i2}^{\lambda} T + D_{i3}^{\lambda} T^2 + D_{i4}^{\lambda} T^3 + (D_{i5}^{\lambda} + D_{i6}^{\lambda} T + D_{i7}^{\lambda} T^2 + D_{i8}^{\lambda} T^3) \rho$$
 (11)

for $i=0,\ldots,10$. First we have applied the instruction **Fit** to the prepared file for all considered thermodynamic state to find the fit presented above. But without any success. The file has been too large for the program *Mathematica*. We have changed the strategy. For fixed λ and for every thermodynamic state we have fitted RDF to the form (10) and have prepared 11 files such that every line has had the form: ρ , T, C_i^{λ} ($i=0,\ldots,10$). Next using again the instruction **Fit** we have fitted C_i^{λ} ($i=0,\ldots,10$) to the form given by (11). In this manner we have fitted RDFs for $\lambda=0$ and 1. Having in mind our earlier observations we have defined the fit for any $\lambda \in \langle 0,1 \rangle$ by the formula

$$g_{\lambda}(r) = g_0(r) + \lambda(g_1(r) - g_0(r))$$
 (12)

The average percentage mean deviation (APMD) between values of the RDFs obtained from computer simulations and those ones obtained from (12) for all states (about 700) and all λ (5 values) is about 3.6%. The most large errors (about 10%) are for r < 1 and for the liquid zone nearby the triple point. Figures 2-3 present some examples of the RDFs obtained from simulations (points) and their fits with formula (10)–(11) (continuous line). Perhaps the considered errors seem to be large enough but we must take into account that the basic thermodynamic properties are not obtained directly with the use of the point values of the RDFs but only by integrals involving RDFs. Because of this to check our fit it is better to compare, for example, the ΔP from computer simulation with that one by the proposed fit. First step to this test is to calculate α from the formula (6). Because of the form of U_p given by (4) we have calculate every integral in (4) as the sum of two integrals first one to r_m and the second one from r_m to 2.5. For the calculations we have used the instruction Integrate $[f, \{r, r \max, r \min\}]$ which gives the definite integral $r_{\min}^{\max} \int f dr$. The final form of α is as follows

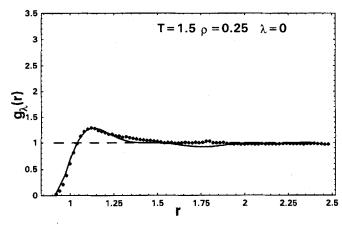
$$\alpha(T,\rho) = \alpha_1(T) + \alpha_2(T)\rho, \tag{13}$$

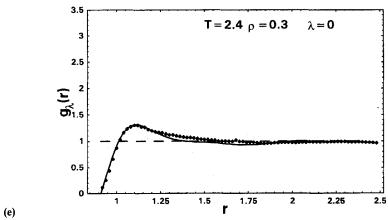


FIGURES 2a-h Examples of RDFs obtained from simulations (points) and their fits with the formulas (10)-(11) (continuous line) for $\lambda = 0$.

(d)

(f)





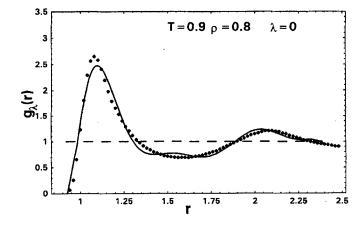
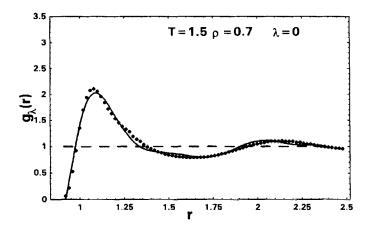


FIGURE 2 (Continued)

(g)



T = 2.4 ρ = 0.65 λ = 0

1 1.25 1.5 1.75 2 2.25 2.

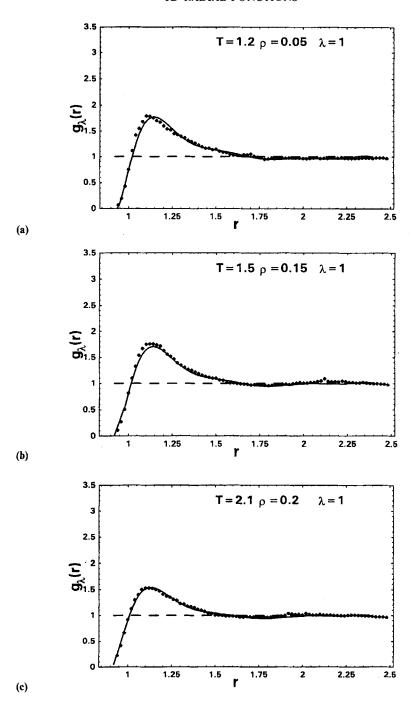
(b) FIGURE 2 (Continued).

being $\alpha_1(T)$ and $\alpha_2(T)$ the following functions:

$$\alpha_1(T) = B_1 + B_2T + B_3T^2 + B_4T^3$$

$$\alpha_2(T) = B_5 + B_6T + B_7T^2 + B_8T^3,$$
(14)

and the coefficients B_i (i=1,...,8) are given in the Table I. Obviously $\partial \alpha/\partial \rho = \alpha_2$. But to Eqs. (7) the asymptotic contribution $-1.6048\rho^2$ must be

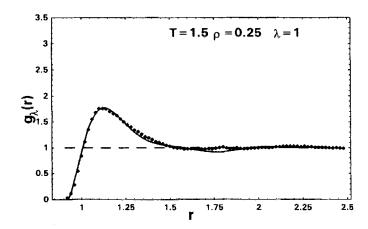


FIGURES 3a-h Examples of RDFs obtained from simulations (points) and their fits with the formulas (10)-(11) (continuous line) for $\lambda = 1$.

(d)

(e)

(f)



 $T = 2.4 \rho = 0.3 \quad \lambda = 1$ 2.5 0.51

1.25

1.75

2.25

2.25

2.5

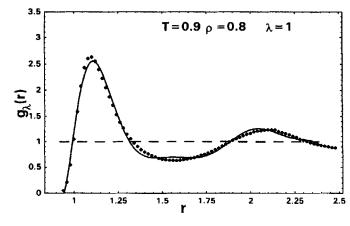
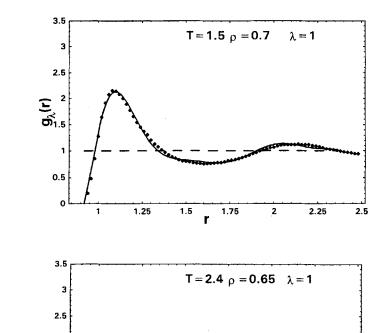


FIGURE 3 (Continued).

(g)



(h) FIGURE 3 (Continued).

added, because in the simulations the intermolecular potential was truncated at the distances r > 2.5. The APMD between the pressure ΔP from (8) and that one obtained from computer simulation is less than 1.5%. It is much more better than in the recently presented global model [7] obtained by the simultaneous fit of α and ΔP for which this error was 4.5%. Also errors for three phase: vapour, liquid and supercritical, are much more smaller than in the case of the model described in [7]. The Table IV gives the comparison of results. It means that our model of the RDFs is quite well to calculate basic thermodynamic properties for any density and for wide range of temperatures. Obviously it could be done easily thanks to the *Mathematica*.

TABLE I Coefficients for the model of the RDF presented by formulas (10) and (11) in the case of $\lambda=0$

;	1	
D ^o .	21964.34897088740	2 7051.003302327661
D _{Oi}	139350.2241272747	- 40710.49103867625
D_{1i}^0	387778.4882472590	
D 21		110363.9289626783
D" 50	- 623459.0143213843	- 186295.4606747660
D".	641495.5112381789	215496.5368373153
$D_{\frac{5}{2}i}^{0}$	- 441393.0193460656	- 175817.4012575378
D ₆ ;	205617.0574867199	100776.4164999647
D_{7i}^0	63980.95443293702	- 39541.85501013222
D _{8i}	12708.13047349101	10074.98292329295
$D_{g_i}^0$	- 1451.314381770 9 14	- 1497.607670733888
D _{10i}	72.07568195921478	98.37575439182680
	3	4
D ₀₁	- 8466.510617687440	1709.697829455704
oğ'	50512.03784547539	- 10219.57664511407
D ⁰ .	- 136935.5491191491	27632.33352617905
ي و ا	222841.3603538987	- 44630.02202501774
og,	– 241127,1454588677	47716.48312701808
) di	180850.5600202020	- 35243.75008092502
) ⁸	94840.53305081700	18165.99740060937
2 ⁸ '	34183.51588167427	- 6431.717600493810
200	- 8069.821601119140	1492.134114489146
00 0	1122.726064671674	- 204.2342808981310
D _{10i}	- 69.71418372378688	12.49436814368750
	5	6
D_{α}^{0}	339343.8277135725	- 372161.5241923337
96,	- 2169188.811526466	2357621.928619326
200	6152447.697563405	- 6633487.290422976
7 2 <i>i</i>	- 10200513.31649033	10920696.41161123
) i	10952898,03395515	- 11654208.45956504
74i	- 7962351.108228733	8427160.287065650
51 D0	3970549.777617761	- 4183181.024729627
201	- 1341707.276813420	1408087.665610213
30	294158.1829499602	- 307708.5570972950
D 0	- 37800,35109537907	39435.19984871939
9i 90 10i	2162.937570722174	- 2251.529986139590
	7	8
D.0.	152148.8587326653	- 22382.83485065755
D. 01	961003.0603400970	141167.2177609763
$\mathbf{p}_{\mathbf{q}_i}$	2697113.680580125	- 395709.1998622871
D 6	- 4431006.912731200	649455.1211666364

TABLE I (Continued)

D° 4720692.836740918		- 691379.5223599440	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		498992.8096068663	
$D_{e,i}^{\delta^{1}}$ 1690580.532427520		-247351.6681488236	
)	- 568668.9725920300	83180.19542097360	
) Ó .	124216.2835467943	-18166.47241511953	
) 9 <i>i</i>	-15915.63388836851	2327.490289229561	
O_{10i}^{0}	908.6459551012900	-132.8806036446879	

TABLE II Coefficients for the model of the RDF presented by formulas (10) and (11) in the case of $\lambda=1$

i	1	. 2
D_{0i}^{1}	95103.85325855910	- 52241.23205058802
D_{1i}^{i}	- 627856.9976829306	372465.5994083283
D_{2i}^{\dagger}	1833293.664757011	- 1160655.526308699
D_{3i}^{1}	- 3119996.759606427	2087883.598163555
D_{4i}^{1}	3429678.535724768	-2407030.209071532
$D_{5i}^{\tilde{1}'}$	- 2546326.634933245	1862115.932206478
$D_{6i}^{\tilde{1}}$	1293992.669632037	- 980722.5604065060
$D_{7i}^{1'}$	444735.7227666087	347752.0092426598
$D_{8i}^{i'}$	98998.48040882510	- 79557.82570623545
D_{9i}^{i}	- 12896.26496120698	10616.58024306630
D_{10i}^{1}	746.9964811457932	-628.1853557895447
i	3	4
D1.	6387.951214577959	865.4048181090750
0 <i>i</i>	- 62175.94350390098	- 1853.776480664667
) i	234376.6934339065	-4768.803855922879
O_{3i}^{2i}	- 480051.8140668182	23750.02712406246
$)^{1}$	608186.0609975056	-41600.96077428380
0 1 .	- 505411.7946683082	41252.82472017156
5 <i>i</i> D ¹	281518.2385309160	- 25711. 4 9443051481
) 1) 1	- 104402.8702819005	10307.64985951463
) 1) 1	24775.47665423007	-2589.701074663967
8 <i>i</i> D ¹	- 3407.912532117026	372.0439040961961
9i D _{10i}	206.8371663473751	-23.36365311877603
	5	6
D^1_{0i}	228550.5685659273	- 253453.6313097043
D_{1i}^{0i}	- 1416362.929820584	1537848.595632371
$\mathcal{O}_{2i}^{1'}$	3892188.682781069	-4135265.166948975
$\mathcal{D}_{3i}^{\tilde{1}}$	6249538.171748497	6493985.339549923
D 1 .	6497129.734632173	- 6600141.402119380

TABLE II (Continued)

D_{5i}^1	-4572526.446258862	4539398.597929388
$D_{6i}^{3'}$	2207515.037372377	- 2141034.515757025
$D_{7i}^{1'}$	- 722295.4137127810	684232.1865349989
$D_{Ri}^{i'}$	153373.2749797466	- 141879.0279738679
$D_{g_i}^{\mathrm{T}}$	- 19094.96004919616	17246.28765720961
$D_{10i}^{i'}$	1058.993338589289	-933.7288965834640
	7	8
) n	108206.9773981747	-16791.78418570737
\mathbf{p}_{1i}^{ii}	- 650405.4567340419	100583.8587806274
n i	1731331.545362507	- 266732.1709703361
D_{3i}^{2i}	-2689631.210097189	412655.7715630713
$D_{4i}^{i'}$	2702366.914913617	- 412752.4652938045
D_{5i}^{T}	- 1836157.379141150	279097.8310982663
D_{6i}^{ii}	855008.7591933430	- 129291.4036145539
$D_{2i}^{\gamma_i}$	— 269588.9526335187	40541.93372656737
$D_{8i}^{i'}$	55116.9526335187	-8240.209847912060
D_{9i}^{1}	- 6601.444650208548	980.8242979478660
D_{10i}^{ii}	351.9213473588027	- 51.94399890824040

TABLE III Coefficients for the function 2 given by (13) and (14)

\boldsymbol{B}_1	3.759033568203449
Β,	3.773975618183613
B_3	- 2.193489640019834
B_{Λ}	0.388278247788549
$\vec{B_s}$	4.561845630407334
B_{h}	- 5.517716303467751
B_7	2.964387804269791
$B_{\rm R}$	- 0.516092101112008

TABLE IV The comparison of the APMD for the ΔP in three phases for the model obtained in this paper and for the fit presented in [7]

	Vapour	Liquid	Supercritical
Global fit	2.31%	6.09%	5.21%
Fit by RDFs	1.33%	0.68%	2.83%

Acknowledgement

The authors thank to the European Union for the financial support throught the European Network "Dynamic of Multiphase Flows across Interfaces" contract no. ERB CHRXCT 940481. We also wish to thank Junta de Extremadura-Consejería de Educación y Juventud and Fondo Social Europeo for financial support. W.O. was a Visiting Professor at Universidad de Extremadura during the academic course 1996/97 supported by Junta de Extremadura-Consejería de Educación y Juventud.

References

- [1] Hansen, J. P. and McDonald, I. R. (1976). "Theory of Simple Liquids", Academic Press, New York.
- [2] Hoheisel, C. (1993). "Theoretical Treatment of Liquids and Liquid Mixtures", Studies in Physical and Theoretical Chemistry 80, Elsevier, Amsterdam.
- [3] Baker, J. A. and Henderson, D. (1976). "What is 'liquid'? Understanding of states of matters", Rev. Mod. Phys., 48, 605.
- [4] Weeks, J. D., Chandler, D. and Andersen, H. C. (1971). "Role of repulsive forces in determining the equilibrium structure of simple fluids", J. Chem. Phys., 54, 5237.
- [5] Cuadros, F. and Mulero, A. (1992). "The radial distribution function for two-dimensional Lennard-Jones fluids:computer simulation results", Chem. Phys., 159, 89.
- [6] Cuadros, F., Mulero, A., Okrasinski, W. and Ahumada, W. (1997). "Thermodynamics of simple fluids following the WCA picture", *International Rev. Phys. Chem.*, In press.
- [7] Cuadros, F., Okrasinski, W. and Ahumada W. (1997). "Fits of the thermodynamic phase plane", *Mol. Sim.*, In press.
- [8] Carnahan, N. F. and Starling, K. E. (1969). "Equation of state for non-attracting rigid spheres", J. Chem. Phys., 51, 635.
- [9] Verlet, L. and Weis, J. J. (1972). "Equilibrium theory of simple liquids", Phys. Rev. A, 5, 939.
- [10] Johnson, J. K., Zollweg, J. A. and Gubbins, K. E. (1993). "The Lennard-Jones equation of state revised", Mol. Phys., 78, 591.
- [11] Kolafa, J. and Nezbeda, I. (1994). "The Lennard-Jones fluids: An accurate analytic and theoreticaly based equation of state", Fluid Phase Equilibria, 100, 1.
- [12] Panagiotopoulos, A. Z., Quirke, N., Stapleton, M. and Tildesley, D. J. (1988). "Phase equilibria by simulation in the Gibbs ensemble. Alternative derivation, generalization and application to mixture and membrane equilibria", Mol. Phys., 63, 527
- [13] Reddy, M. R. and O'Shea, S. F. (1986). "The equation of state of the two-dimensional Lennard-Jones fluid", Can. J. Phys., 64, 677.
- [14] Wolfram, S. (1991). "Mathematica: A System for Doing Mathematics by Computer", Addison-Wesly, Reading.
- [15] Weeks, J. D. and Broughton, J. Q. (1983). J. Chem. Phys., 78, 4197.